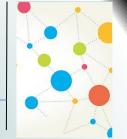


Entropy-Based Dynamic Complexity Metrics for Service-Oriented Systems

Chengying Mao, Changfu Xu

School of Software and Comm. Eng., Jiangxi University of Finance and Economics, Nanchang, China

E-Mail: maochy@yeah.net


Outline

- Background
- Entropy-based dynamic complexity metrics framework
- Two models and entropy definition
- Experimental analysis
- Conclusions

Background

- The complexity analysis of service system is mainly from the static aspect, and the dynamic complexity measurement has not attracted enough attention yet.
- Two core issues dynamic complexity metric for service system:
 - which factors to consider of the dynamic complexity of service system.
 - How to model dynamic complexity metrics of service system.

Background (cont.)

- Some metrics about the complexity of a service system have been deeply investigated from two aspects of control structure and information flow:
 - Control flow.
 - Data flow.
 - Interface.
- In difference, we consider that the dynamic complexity of a service system with execution traces.

Entropy-Based Dynamic Complexity Metrics Framework

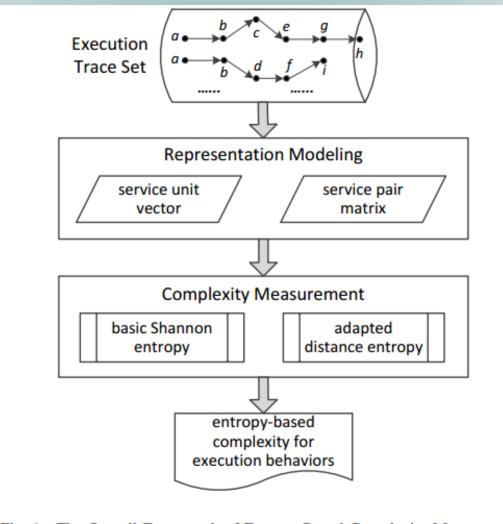


Fig. 1. The Overall Framework of Entropy-Based Complexity Measurement for the Dynamic Execution Behaviors of a Service System

Two Models and Entropy Definition

Two Models for Execution Traces

Given a service system has six services, in which the services are from s_1 to s_6 , $T_1 = \langle s_1, s_2, s_4, s_2, s_4, s_6 \rangle$ and $T_2 = \langle s_1, s_5, s_6 \rangle$ are two possible traces. Then the two traces can be represented to the corresponding **service unit vector** and **service pair matrix** models as below:

Catas	Service unit vector							
Categ.	S 1	S ₂	S 3	S 4	S 5	S 6		
<i>T</i> ₁	1	1	0	1	0	1		
<i>T</i> ₂	1	0	0	0	1	1		

	Service pair matrix								
	S ₁ S ₂ S ₃ S ₄ S ₅ S ₆								
S 1	0	1	0	0	1	0			
S ₂	0	0	0	1	0	0			
S 3	0	0	0	0	0	0			
S ₄	0	1	0	0	0	1			
S 5	0	0	0	0	0	1			
S 6	0	0	0	0	0	0			

Two Models and Entropy Definition (cont.)

- Two definition of entropy:
 - 1) Shannon Entropy

$$H_s = -\sum_{i=1}^m p_i \cdot \log p_i. \tag{1}$$

in which, m is the number of trace category in real application scenarios, for each trace category, its occurrence probability can be counted as p_i ($1 \le i \le m$).

Two Models and Entropy Definition (cont.)

2) Adapted Distance Entropy

$$H_d = \frac{W}{|T|} \times \left(-\sum_{i=1}^{|T|} \frac{w_i}{W} \cdot \log \frac{w_i}{W}\right), \tag{2}$$

in which, w_i is the average of the distance from T_i to other (|T| - 1) traces. $W = \sum_{i=1}^{|T|} w_i$. T is the execution trace set of a service system.

A running example

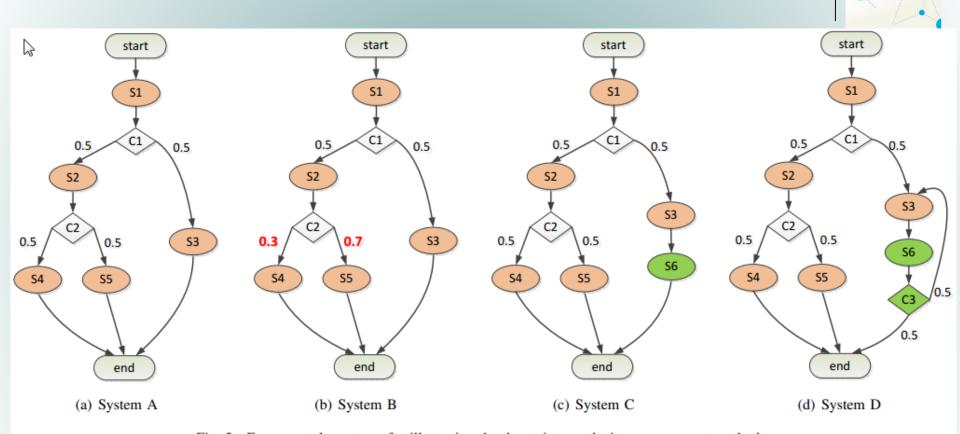


Fig. 2. Four example systems for illustrating the dynamic complexity measurement methods

◆ System Complexity Relation: D > C > A > B.

TABLE I THE EXECUTION TRACES OF FOUR SERVICE SYSTEM (|T|=20)

System	Category of Traces	Execution Traces	Occurrence Number
	C_{A1}	$s_1 \rightarrow s_2 \rightarrow s_4$	5
A	C_{A2}	$s_1 \rightarrow s_2 \rightarrow s_5$	5
	C_{A3}	$s_1 o s_3$	10
	C_{B1}	$s_1 \rightarrow s_2 \rightarrow s_4$	3
B	C_{B2}	$s_1 \rightarrow s_2 \rightarrow s_5$	7
	C_{B3}	$s_1 \rightarrow s_3$	10
	C_{C1}	$s_1 \rightarrow s_2 \rightarrow s_4$	5
C	C_{C2}	$s_1 \rightarrow s_2 \rightarrow s_5$	5
	C_{C3}	$s_1 \rightarrow s_3 \rightarrow s_6$	10
	C_{D1}	$s_1 \rightarrow s_2 \rightarrow s_4$	5
D	C_{D2}	$s_1 \rightarrow s_2 \rightarrow s_5$	5
	C_{D3}	$s_1 \rightarrow s_3 \rightarrow s_6$	5
	C_{D4}	$s_1 \rightarrow s_3 \rightarrow s_6 \rightarrow s_3 \rightarrow s_6$	5

TABLE II THE SERVICE UNIT VECTORS OF FOUR SERVICE SYSTEMS

Sys.	Categ.	Service Unit Vector						Num.	Prob.
Sys.	Categ.	s_1	s_2	s_3	s_4	s_5	s_6	rvuiii.	1100.
	C_{A1}	1	1	0	1	0	0	5	0.25
A	C_{A2}	1	1	0	0	1	0	5	0.25
	C_{A3}	1	0	1	0	0	0	10	0.5
	C_{B1}	1	1	0	1	0	0	3	0.15
В	C_{B2}	1	1	0	0	1	0	7	0.35
	C_{B3}	1	0	1	0	0	0	10	0.5
	C_{C1}	1	1	0	1	0	0	5	0.25
C	C_{C2}	1	1	0	0	1	0	5	0.25
	C_{C3}	1	0	1	0	0	1	10	0.5
D	C_{D1}	1	1	0	1	0	0	5	0.25
	C_{D2}	1	1	0	0	1	0	5	0.25
	C_{D3}	1	0	1	0	0	1	10	0.5

TABLE III
THE SERVICE PAIRS OF FOUR SERVICE SYSTEMS

					e Pair				
System	Category			Number	Probability				
of	of Traces	(s_1, s_2)	(s_1,s_3)	(s_2,s_4)	(s_2,s_5)	(s_3,s_6)	(s_6,s_3)	Number	Trobability
	C_{A1}	1	0	1	0	0	0	5	0.25
A	C_{A2}	1	0	0	1	0	0	5	0.25
	C_{A3}	0	1	0	0	0	0	10	0.5
	C_{B1}	1	0	1	0	0	0	3	0.15
В	C_{B2}	1	0	0	1	0	0	7	0.35
	C_{B3}	0	1	0	0	0	0	10	0.5
	C_{C1}	1	0	1	0	0	0	5	0.25
C	C_{C2}	1	0	0	1	0	0	5	0.25
	C_{C3}	0	1	0	0	1	0	10	0.5
	C_{D1}	1	0	1	0	0	0	5	0.25
D	C_{D2}	1	0	0	1	0	0	5	0.25
	C_{D3}	0	1	0	0	1	0	5	0.25
	C_{D4}	0	1	0	0	1	1	5	0.25

TABLE V

The measure result based on four dynamic complexity metrics

Model	Motric	Service-oriented system					
Model	Metric	Α	В	С	D		
Service unit	$H_s(*, suv)$	1.5	1.44	1.5	1.5		
vector	$H_d(*, suv)$	1.4212	1.3828	1.6055	1.6055		
Service pair	$H_s(*,spm)$	1.5	1.44	1.5	2		
matrix	$H_d(*,spm)$	1.4212	1.3828	1.6055	1.8628		

• Only $H_d(*,spm)$ metric result is consistent with the real dynamic complexity relation of four systems: D > C > A > B.

Experimental Analysis

Experiment Setup

An online travel service system is used for the simulation analysis. As shown in Figure 3. For each version of the service system, |T| = 100 execution traces are simulated and the experiment in each case is

repeated 1000 times.

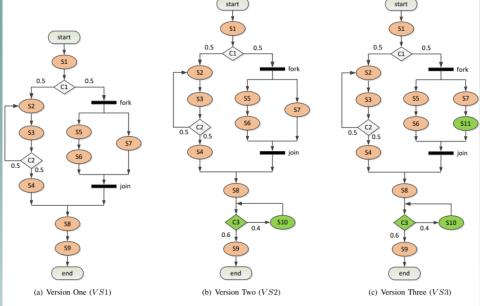


Fig. 3. The business logic of an online travel service system

Experimental Results

Suggestions on selection measurement method

TABLE VI

THE MEASUREMENT RESULTS OF THE ONLINE TRAVEL SERVICE SYSTEM

Model	Metric	System Version				
Iviouci	Wictife	VS1	VS2	VS3		
service unit	$H_s(*, suv)$	0.9965	1.9518	1.9519		
vector	$H_d(*, suv)$	2.4456	3.0216	3.2128		
service pair	$H_s(*,spm)$	2.0817	3.4863	3.6342		
matrix	$H_d(*,spm)$	3.7762	4.8434	5.0267		

 $H_d(*,spm)$ is the best measurement method.

Conclusions

- Main contributions:
 - 1) Two representation models;
 - 2) Adapted distance entropy;
 - 3) Four dynamic complexity metrics.
- According to the experimental analysis, the results show that the above two models and two entropies are all suitable to depict the dynamic complexity of a service system. Among them, the combination of service pair matrix and the adapted distance entropy is the best measurement method.

Thanks for Your Attendance! Any Question?

Contact: maochy@yeah.net

